Home Technology Computer Vision High-dimensional imaging using Combinatorial Channel Multiplexing and Deep Learning

High-dimensional imaging using Combinatorial Channel Multiplexing and Deep Learning

0
High-dimensional imaging using Combinatorial Channel Multiplexing and Deep Learning

References

  1. Rodriguez-Canales J., Eberle F. C. & Emmert Buck M. R. Why it is crucial to reintegrate Pathology into Cancer Research? Bioessays, . 33490-498 (2011).

    Article PubMed PubMed Central Google Scholar

  2. Odell, I. D. & Cook, D. Immunofluorescence techniques. J Invest. Dermatol. 133E4 (2013).

    ArticleCAS PubMed Google Scholar

  3. Tsujikawa, T. et al. Quantitative Multiplex Immunohistochemistry reveals myeloid inflamed tumor immune complexity associated with poor outcome. Cell Rep. 19460233 203-217 (2017).

    ArticleCAS PubMed PubMed Central Google Scholar

  4. Gerdes, M. J. et al. Highly multiplexed analysis of single cells in formalin-fixed paraffin-embedded tumor tissue. Proc. Natl Acad. Sci. USA 110,11982-11987 (2012).

    ArticleCAS PubMed PubMed Central Google Scholar

  5. Radtke, A. J. et al. IBEX: A versatile multiplex optical image approach for deep phenotyping of cells and spatial analysis in complex tissues. Proc. Natl Acad. Sci. USA 11733455-33465 (2010).

    ArticleCAS PubMed PubMed Central Google Scholar

  6. Schubert, W. et al. Analyzing proteome function and topology by automated multidimensional fluorescent microscopy. Nat. Biotechnol. 241270-1278 (2006).

    ArticleCAS PubMed Google Scholar

  7. Lin, J. R. et al. Highly multiplexed imaging of human tissue and tumors with t-CyCIF using optical microscopes. ELife 7(E31657, 2018).

    Article PubMed PubMed Central Google Scholar

  8. Kinkhabwala, A. et al. MACSima Imaging cyclic Staining (MICS), reveals combinatorial targets pairs for CAR-T cell treatment of solid tumours. Sci. Rep. 121-16 (2022).

    Article Google Scholar

  9. Multiplexed Protein Maps Link Subcellular Organization to Cellular States. Gut, G. () 361Eaar7042, Science(2018).

    Article PubMed Google Scholar

  10. Goltsev, Y. et al. Deep profiling of mouse architecture using CODEX multiplexed images. Cells (19460235) 174(968-981, 2018).

    ArticleCAS PubMed PubMed Central Google Scholar

  11. Wang, Y. et al. Rapid sequential in situ multiplication with DNA exchange imaging of neuronal tissues and cells. Nano Lett. 176131-6139 (2017).

    ArticleCAS PubMed PubMed Central Google Scholar

  12. Saka, S. K. et al. Immuno-SABER allows for highly multiplexed, amplified protein imaging of tissues. Nat. Biotechnol. 371080-1090 (2019).

    ArticleCAS PubMed PubMed Central Google Scholar

  13. Lin, R. et al. A hybridization-chain-reaction-based method for amplifying immunosignals. Nat. Methods 15. 275-278 (2018).

    Article PubMed Google Scholar

  14. Stack, E. C., Wang, C., Roman, K. A. & Hoyt, C. C. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of tyramide signal amplification, multispectral imaging and multiplex analysis. Methods. 70.46-58. (2014).

    ArticleCAS PubMed Google Scholar

  15. Keren, L. et al. MIBI-TOF : a multiplexed image platform that relates tissue structure and cellular phenotypes. Sci. Adv. 5eaax5851 (2019).

    ArticleCAS PubMed PubMed Central Google Scholar

  16. Giesen, C. et al. Mass cytometry for highly multiplexed imaging with subcellular resolution of tumor tissues. Nat. Methods 11417-422 (2015).

    ArticleCAS PubMed Google Scholar

  17. de Souza, N.; Zhao, S.; & Bodenmiller B.Multiplex Protein Imaging in Tumor Biology. Nat. Rev. Cancer 24171-191 (2024).

    Article PubMed Google Scholar

  18. Zidane, M. et al. A review of deep learning applications for highly multiplexed data analysis in tissue imaging. Front. Bioinform. 31159381 (2023).

    Article PubMed PubMed Central Google Scholar

  19. Elhanani, O. Ben-Uri R. & Keren L. Spatial Profiling Technologies Illuminate the Tumor Microenvironment. Cancer Cell, () 41(404-420-2023).

    ArticleCAS PubMed Google Scholar

  20. Moffitt J. R. Lundberg E. & Heyn H. The emerging terrain of spatial profiling technology Nat. Rev. Genet. 23741-759 (2022).

    ArticleCAS PubMed Google Scholar

  21. Spatially resolved and highly multiplexed RNA Profiling in Single Cells. Science 348AAA6090 (2015).

    Article PubMed PubMed Central Google Scholar

  22. Eng, C. H. L. et al. Transcriptome scale super-resolved tissue imaging by RNA seqFISH. Nature. 568235-239 (2019).

    ArticleCAS PubMed PubMed Central Google Scholar

  23. Milo, R. Jorgensen P. Moran U. Weber G. & Springer M. BioNumbers – the database of key numbers for molecular and cellular biology. Nucleic Acids Res. 38D750-d753 (2010).

    ArticleCAS PubMed Google Scholar

  24. Compression of structured, high-throughput sequence data. PLoS ONE. 8,.

    Article Google Scholar

  25. Cleary, B., Cong, L., Cheung, A., Lander, E. S. & Regev, A. Efficient generation transcriptomic profiles using random composite measurements. Cell 1711424-1436 (2017).

    ArticleCAS PubMed PubMed Central Google Scholar

  26. Cleary, B. et al. Compressed sensing is a highly efficient imaging transcriptomics. Nat. Biotechnol. 39936-942 (2021).

    ArticleCAS PubMed PubMed Central Google Scholar

  27. Sachs, K. et al. Compressed sensing to simultaneously measure multiple types of biological molecules in a sample. JUSTIA Patent 10832795 (2013).

  28. Schurch, C. M. et al. Coordinated cellular neighbourhoods orchestrate antitumoral immune response at the colorectal carcinoma invasive front. Cell 1821341-1359 (2010).

    Article PubMed PubMed Central Google Scholar

  29. Keren, L. et al. Multiplexed ion-beam imaging reveals a structured tumor-immune environment in triple negative breast carcinoma. (19460235]1731373-1387, Cell (2018).

    ArticleCAS PubMed PubMed Central Google Scholar

  30. Greenwald, N. F. et al. Whole-cell segmentation with human-level performance by using large-scale data annotating and deep learning. Nat. Biotechnol. 40555-565 (2022).

    ArticleCAS PubMed Google Scholar

  31. Bai, Y. et al. Expanded vacuum-stable gels for multiplexed high-resolution spatial histopathology. Nat. Common. 141-18 (2023).

    Article Google Scholar

  32. HuBMAP Consortium. The NIH Human Biomolecular Atlas Program: The human body at cellular level. Nature (2019) 574(2019) 187

  33. Regev, A. et al. The Human Cell Atlas. The Human Cell Atlas 6

    Article PubMed PubMed Central Google Scholar

  34. Thul, P. J. The Human Protein Atlas : a spatial mapping of the human proteome. Protein Sci. 27233 (2018).

    ArticleCAS PubMed Google Scholar

  35. Huang, H. et al. UNet 3+ is a full-scale, connected UNet designed for medical image segmentation. In Proceeding of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (eds Rupp, M., Jutten, C., & Fung, P.). (IEEE, 2010).

  36. Sommer, C., Straehle, C., Kothe, U. & Hamprecht F. A. Ilastik : interactive learning toolkit. In Proceedings from the 2011 IEEE International Symposium on Medical Imaging: From Nano To Macro edited by Wright, S. and Pan, X. & Liebling, M.) (IEEE, 2011).

  37. Black, S. et al. CODEX multiplexed imaging of tissue with DNA-conjugated antibody. Nat. Protoc. 163802-3835 (2021).

    ArticleCAS PubMed PubMed Central Google Scholar

  38. Bankhead, P. et al. QuPath: Open Source Software for Digital Pathology Image Analysis Sci. Rep. 71-7 (2017).

    ArticleCAS Google Scholar

  39. Elhanani, O. & Angelo M. High-dimensional ion beam imaging for tissue profiling. Mol. Biol. 2386147-156 (2022).

    ArticleCAS PubMed Google Scholar

  40. Baranski, A. et al. MAUI (MBI analysis user interface)–an imaging pipeline for multiplexed, mass-based imaging. PLoS Comput. Biol. 17e1008887 (2021).

    ArticleCAS PubMed PubMed Central Google Scholar

  41. Xi, Y. et al. Adaptive-weighted, high-order TV algorithm for sparse view CT reconstruction. Med. Phys. 505568-5584 (2023).

    Article PubMed Google Scholar

  42. Shen, G. Dwivedi K. Majima K. Horikawa T. & Kamitani Y. End to end deep image reconstruction using human brain activity. Front. Comput. Neurosci. 13432276 (2019).

    Article Google Scholar

  43. Shen, G., Horikawa, T., Majima, K. & Kamitani, Y. Deep image reconstruction using human brain activity. PLoS Comput. Biol. 15e1006633 (2019).

    Article PubMed PubMed Central Google Scholar

  44. Takagi, Y. & Nishimoto S. High-resolution reconstruction of images using latent diffusion models based on human brain activity. In Proceeding of the 2023 IEEE/CVF conference on Computer Vision & Pattern Recognition edited by Brown, M. S. Li, F. F., Mori G. & Sato Y. (IEEE, 2023).

  45. Wiedenmann, J. Oswald, F. and Nienhaus, G. U. The use of fluorescent proteins in live cell imaging. Opportunities, limitations, challenges. IUBMB Life 611029-1042 (2009).

    ArticleCAS PubMed Google Scholar

  46. Wang, J., Zheng, N., Chen, B. & Principe J. C. Associations between image assessments as cost function in linear decomposition : MSE, SSIM and correlation coefficient. Neurocomputing 422139-149 (2021).

    Download references.

www.aiobserver.co

NO COMMENTS

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Exit mobile version