References
-
Rodriguez-Canales J., Eberle F. C. & Emmert Buck M. R. Why it is crucial to reintegrate Pathology into Cancer Research? Bioessays, . 33490-498 (2011).
-
Odell, I. D. & Cook, D. Immunofluorescence techniques. J Invest. Dermatol. 133E4 (2013).
-
Tsujikawa, T. et al. Quantitative Multiplex Immunohistochemistry reveals myeloid inflamed tumor immune complexity associated with poor outcome. Cell Rep. 19460233 203-217 (2017).
-
Gerdes, M. J. et al. Highly multiplexed analysis of single cells in formalin-fixed paraffin-embedded tumor tissue. Proc. Natl Acad. Sci. USA 110,11982-11987 (2012).
-
Radtke, A. J. et al. IBEX: A versatile multiplex optical image approach for deep phenotyping of cells and spatial analysis in complex tissues. Proc. Natl Acad. Sci. USA 11733455-33465 (2010).
-
Schubert, W. et al. Analyzing proteome function and topology by automated multidimensional fluorescent microscopy. Nat. Biotechnol. 241270-1278 (2006).
-
Lin, J. R. et al. Highly multiplexed imaging of human tissue and tumors with t-CyCIF using optical microscopes. ELife 7(E31657, 2018).
-
Kinkhabwala, A. et al. MACSima Imaging cyclic Staining (MICS), reveals combinatorial targets pairs for CAR-T cell treatment of solid tumours. Sci. Rep. 121-16 (2022).
-
Multiplexed Protein Maps Link Subcellular Organization to Cellular States. Gut, G. () 361Eaar7042, Science(2018).
-
Goltsev, Y. et al. Deep profiling of mouse architecture using CODEX multiplexed images. Cells (19460235) 174(968-981, 2018).
-
Wang, Y. et al. Rapid sequential in situ multiplication with DNA exchange imaging of neuronal tissues and cells. Nano Lett. 176131-6139 (2017).
-
Saka, S. K. et al. Immuno-SABER allows for highly multiplexed, amplified protein imaging of tissues. Nat. Biotechnol. 371080-1090 (2019).
-
Lin, R. et al. A hybridization-chain-reaction-based method for amplifying immunosignals. Nat. Methods 15. 275-278 (2018).
-
Stack, E. C., Wang, C., Roman, K. A. & Hoyt, C. C. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of tyramide signal amplification, multispectral imaging and multiplex analysis. Methods. 70.46-58. (2014).
-
Keren, L. et al. MIBI-TOF : a multiplexed image platform that relates tissue structure and cellular phenotypes. Sci. Adv. 5eaax5851 (2019).
-
Giesen, C. et al. Mass cytometry for highly multiplexed imaging with subcellular resolution of tumor tissues. Nat. Methods 11417-422 (2015).
-
de Souza, N.; Zhao, S.; & Bodenmiller B.Multiplex Protein Imaging in Tumor Biology. Nat. Rev. Cancer 24171-191 (2024).
-
Zidane, M. et al. A review of deep learning applications for highly multiplexed data analysis in tissue imaging. Front. Bioinform. 31159381 (2023).
-
Elhanani, O. Ben-Uri R. & Keren L. Spatial Profiling Technologies Illuminate the Tumor Microenvironment. Cancer Cell, () 41(404-420-2023).
-
Moffitt J. R. Lundberg E. & Heyn H. The emerging terrain of spatial profiling technology Nat. Rev. Genet. 23741-759 (2022).
-
Spatially resolved and highly multiplexed RNA Profiling in Single Cells. Science 348AAA6090 (2015).
-
Eng, C. H. L. et al. Transcriptome scale super-resolved tissue imaging by RNA seqFISH. Nature. 568235-239 (2019).
-
Milo, R. Jorgensen P. Moran U. Weber G. & Springer M. BioNumbers – the database of key numbers for molecular and cellular biology. Nucleic Acids Res. 38D750-d753 (2010).
-
Compression of structured, high-throughput sequence data. PLoS ONE. 8,.
-
Cleary, B., Cong, L., Cheung, A., Lander, E. S. & Regev, A. Efficient generation transcriptomic profiles using random composite measurements. Cell 1711424-1436 (2017).
-
Cleary, B. et al. Compressed sensing is a highly efficient imaging transcriptomics. Nat. Biotechnol. 39936-942 (2021).
-
Sachs, K. et al. Compressed sensing to simultaneously measure multiple types of biological molecules in a sample. JUSTIA Patent 10832795 (2013).
-
Schurch, C. M. et al. Coordinated cellular neighbourhoods orchestrate antitumoral immune response at the colorectal carcinoma invasive front. Cell 1821341-1359 (2010).
-
Keren, L. et al. Multiplexed ion-beam imaging reveals a structured tumor-immune environment in triple negative breast carcinoma. (19460235]1731373-1387, Cell (2018).
-
Greenwald, N. F. et al. Whole-cell segmentation with human-level performance by using large-scale data annotating and deep learning. Nat. Biotechnol. 40555-565 (2022).
-
Bai, Y. et al. Expanded vacuum-stable gels for multiplexed high-resolution spatial histopathology. Nat. Common. 141-18 (2023).
-
HuBMAP Consortium. The NIH Human Biomolecular Atlas Program: The human body at cellular level. Nature (2019) 574(2019) 187
-
Regev, A. et al. The Human Cell Atlas. The Human Cell Atlas 6
-
Thul, P. J. The Human Protein Atlas : a spatial mapping of the human proteome. Protein Sci. 27233 (2018).
-
Huang, H. et al. UNet 3+ is a full-scale, connected UNet designed for medical image segmentation. In Proceeding of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (eds Rupp, M., Jutten, C., & Fung, P.). (IEEE, 2010).
-
Sommer, C., Straehle, C., Kothe, U. & Hamprecht F. A. Ilastik : interactive learning toolkit. In Proceedings from the 2011 IEEE International Symposium on Medical Imaging: From Nano To Macro edited by Wright, S. and Pan, X. & Liebling, M.) (IEEE, 2011).
-
Black, S. et al. CODEX multiplexed imaging of tissue with DNA-conjugated antibody. Nat. Protoc. 163802-3835 (2021).
-
Bankhead, P. et al. QuPath: Open Source Software for Digital Pathology Image Analysis Sci. Rep. 71-7 (2017).
-
Elhanani, O. & Angelo M. High-dimensional ion beam imaging for tissue profiling. Mol. Biol. 2386147-156 (2022).
-
Baranski, A. et al. MAUI (MBI analysis user interface)–an imaging pipeline for multiplexed, mass-based imaging. PLoS Comput. Biol. 17e1008887 (2021).
-
Xi, Y. et al. Adaptive-weighted, high-order TV algorithm for sparse view CT reconstruction. Med. Phys. 505568-5584 (2023).
-
Shen, G. Dwivedi K. Majima K. Horikawa T. & Kamitani Y. End to end deep image reconstruction using human brain activity. Front. Comput. Neurosci. 13432276 (2019).
-
Shen, G., Horikawa, T., Majima, K. & Kamitani, Y. Deep image reconstruction using human brain activity. PLoS Comput. Biol. 15e1006633 (2019).
-
Takagi, Y. & Nishimoto S. High-resolution reconstruction of images using latent diffusion models based on human brain activity. In Proceeding of the 2023 IEEE/CVF conference on Computer Vision & Pattern Recognition edited by Brown, M. S. Li, F. F., Mori G. & Sato Y. (IEEE, 2023).
-
Wiedenmann, J. Oswald, F. and Nienhaus, G. U. The use of fluorescent proteins in live cell imaging. Opportunities, limitations, challenges. IUBMB Life 611029-1042 (2009).
-
Wang, J., Zheng, N., Chen, B. & Principe J. C. Associations between image assessments as cost function in linear decomposition : MSE, SSIM and correlation coefficient. Neurocomputing 422139-149 (2021).
Download references.